Exact Parametrization of The Mass Matrices and The KM Matrix

نویسندگان

  • K. Harayama
  • N. Okamura
چکیده

We analyze properties of general quark mass matrices. The up and down part quark mass matrices are written in terms of six dimensionless parameters and six quark masses. It is shown that two of the former six dimensionless parameters can be chosen to be any value. Once values for these two parameters are chosen, Kobayashi-Maskawa matrix is written in terms of the remaining four parameters. Our results are given analytically without any approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - p h / 96 05 21 5 v 2 7 M ay 1 99 6 Exact Parametrization of The Mass Matrices and The KM Matrix

We analyze properties of general quark mass matrices. The up and down part quark mass matrices are written in terms of six dimensionless parameters and six quark masses. It is shown that two of the former six dimensionless parameters can be chosen to be any value. Once values for these two parameters are chosen, Kobayashi-Maskawa matrix is written in terms of the remaining four parameters. Our ...

متن کامل

Exact Parametrization of Majorana Neutrino Mass Matrix with Large Mixing

Under the assumption that the neutrinos are Majorana particles we study how the lepton mass matrices can be transformed into the simple form which has the same physical quantities by removing redundant parameters. We propose the exact parametrization of the lepton mass matrices which reflects the small νe − νμ mixing and the large νμ − ντ mixing. The relations between the twelve parameters and ...

متن کامل

Nonlinear inelastic static analysis of plane frames with numerically generated tangent stiffness matrices

For the nonlinear analysis of structures using the well known Newton-Raphson Method, the tangent stiffness matrices of the elements must be constructed in each iteration. Due to the high expense required to find the exact tangent stiffness matrices, researchers have developed novel innovations into the Newton-Raphson method to reduce the cost and time required by the analysis. In this paper, a ...

متن کامل

Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)

A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...

متن کامل

Parametrization of Pedestrian Injuries and its Utilisation in Proving Traffic Accidents Course Using Injury Signatures and Contact Signatures

Background: The paper points out the present limited possibility of using the verbal description of injuries for the needs of experts from the field of road transportation as relevant criminalistics traces, as well as the options of the FORTIS system that creates a new area for a deeper interdisciplinary approach in the field of expert evidence. Further a description of how to create injury si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996